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Characterizing Optical Thin Films (I) 
 
Physical vapor deposition is the most common technique used to deposit optical thin 
films for a large variety of applications.  This requires the ability to get a solid material 
into a vapor (gaseous) form, to transport it to a surface onto which the film is to be 
deposited, and to be able to control the physical and optical properties of the resultant 
film.  Sputtering and evaporation in a vacuum are the prevalent techniques used to get 
solid materials into a vapor form.  Regardless of the deposition technique used, it is 
necessary in the development of coating equipment and coating processes to have the 
ability to determine the physical and optical properties of the resultant films.  There is a 
considerable range of equipment available to do this.  However, all film Optical thin film 
manufacturers have to have the ability to measure the performance of finished devices.  A 
recording spectrophotometer is the workhorse instrument to do this.  Spectral 
measurements of single layer coatings and certain multi-layers structures can be used to 
extract optical properties of the films 
 
Calculating the spectral performance of optical thin films on a surface is a very mature 
technology and has been widely published (1,2).  It is then possible to take data from the 
spectral measurements of films and extract optical properties.  It is the purpose of this 
article to discuss how this can be done, the validity of the results and then to discuss what 
we can further learn about the films from the results.  To do so, we first look at using the 
optical properties of thin film materials to calculate the spectral performance. 
 
What we want to do is to determine the amplitudes and intensities of light incident on a 
thin film and/or thin film system deposited on a surface.  To do so is fairly 
straightforward however complex.  One only has to set up Maxwell’s equations, apply 
the appropriate boundary conditions to arrive at a solution.  There are a variety of 
approaches that have been used based on this approach and, although seemingly different, 
eventually arrive at the same result.  For this article I choose to use a convention as 
previously published by Heavens (1).  Also, for simplicity I choose to pick up the 
calculations after the wave equations have been solved and we are at a position where the 
calculations have become relatively simple.  That is, we assume all of the preliminary 
messy work has been done appropriately and we can go forward in a relatively easy 
manner.  Also, we will reduce the complexity further by only considering light that is 
normally incident on the surface.  This assumption is valid since oblique incidence is not 
needed in the examples that we will be considering later.  Furthermore, we are going to 
assume that the materials are non-absorbing.  This is not essential.  However, if the 
materials were absorbing, the refractive index (n) would have to be replaced by the 
complex refractive index (n-ik).  Once we have determined how to handle the non-
absorbing situation, we will then allow for slightly absorbing films.  The following 
derivation is also based on previously published material prepared by the author (3). 
 
Consider light incident on a material with a smooth polished surface of refractive index 
n1 (see Figure 1).  Some of the light will be reflected at the surface and some of the light 
will be transmitted into the material.  The Fresnel coefficients for the amplitudes of the 
reflected and transmitted light traveling from n0 (the surrounding medium) to n1 are given 
in equations 1 and 2 and for light traveling from n1 to n0 are given by equations 3 and 4. 
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Figure 1.  R and T of light incident on a 
surface. 

As indicated previously, the above relationships are valid for light incident at normal 
incidences.  For light obliquely incident on the surface it is necessary to consider the s 
and p polarizations, calculate R and T separately for each polarization and average them 
together.  Although easy to do, this is a complication beyond what we need to consider at 
this point.  The amount of reflected and transmitted light at the interface are given in 
equations 5 and 6 in terms of the Fresnel coefficients and the refractive indexes (where  
r1' = -r1): 
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If a thin film is deposited over the surface of the material there are now 2 interfaces 
where the light can be reflected and transmitted.  Also, there will essentially be an infinite 
number of multiple reflection and transmissions that need to be summed to give the final 
amount of reflected and transmitted light.  This sum is related to the optical properties of 
the film, the optical properties of the substrate, their relative values and the phase 
thickness of the film.   
 
Consider the situation shown in Figure 2 for light incident at normal incidence on a 
coated surface (Note: although I had excluded oblique incidence, an angle is included in 
the figure so that the reflected and transmitted beams would be separated out and could 
be labeld.  The calculations are for normal incidence.): 
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Figure 2.  Showing a ray of light traveling in medium no incident on film n1 deposited 
over substrate n2. 
 
The change in phase for the light traveling through the film is δ1 given by: 
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Therefore the sum of the reflected amplitude is given by: 
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This expression can be simplified further by considering conservation of energy and the 
fact that if we are dealing with non-absorbing materials: 
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so that equation 8 becomes: 
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It also follows that the sum of the transmitted amplitude is given by: 
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The above terms (R and T) are the amplitudes of the waves.  What we are looking for is 
the ratio of the reflected and transmitted energies (R and T) to the incident energy.  These 
are given by the product of each of the amplitudes with their complex conjugate of the 
amplitudes.  When this is done, along with the appropriate calculations, the reflectance 
and transmittance become: 
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The above term for the reflectance can be written as: 
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If we now substitute the expressions for the Fresnel coefficient at the medium/film 
interface [equation 1] and the film substrate interface [(n1-ns)/(n1+ns) and the phase 
thickness into equation 13 we have the following expression for the reflectance of a 
single layer film (for normal incidence and non-absorbing): 
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The above expression can be rearranged to give (where n0=1): 
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The above expression is accurate to calculate the reflectance of a single layer film of 
known refractive index n1 and thickness d1 where λ is a variable.  Unfortunately nature is 
not as kind as we might wish.  That is, n1 is not a constant but varies as a function of the 
wavelength [ )(1 λfn = ] and therefore the appropriate refractive index must be used in 
calculating R at each wavelength.  Also it is not easy to solve equation 14 for n as a 
function of the measured reflectance at each wavelength.  However, the cosine function is 
cyclical.  This means that the value of the reflectance will increase and decrease in a 
regular manner as the thickness of the film increases.  Consider the reflectance of films of 
magnesium fluoride (n1=1.38) and aluminum oxide (n1=1.63) on a glass substrate 
(n2=1.52).  Table I shows the values for the Fresnel coefficients and the terms A, B and 
D.  Figure 3 shows a plot of the cosine function and the reflection of the two films as the 
thickness increases from zero to a thickness that corresponds to a full cosine cycle for 
each film. 
 

Table I 
--------------------------------------------------------------------------------------------------------- 

TERM nf = 1.38 nf = 1.65 
r1 -0.159663866 -0.245283019 
r2 -0.048275862 0.041009464 
A 0.027823109 0.061845535 
B 0.015415822 -0.02011785 
D 1.0000594 1.00010118 

Rmax 0.04258 0.080339 
Rmin 0.0126 0.04258 

--------------------------------- --------------------------------- --------------------------------- 
k = 0 no = 1 ns = 1,52 

 
At zero thickness the reflectance is just that of the uncoated substrate (since it is 
uncoated) and the order is said to be 0.  As the film grows, the reflectance will increase 
(film index > that of the substrate) or decrease (film index < that of the substrate) until 
reaching the first extreme, maximum and minimum respectively.  This thickness 
corresponds to a quarter-wave optical thickness (QWOT) and is said to have an order of 
1.  As the film thicknesses increase further the reflectance of the films will then go in the 
opposite direction, decreasing for the high index film and increasing for the low index 
film until reaching that of the bare substrate.  At this point the thicknesses correspond to a 
half-wave optical thickness (HWOT) and said to be absentee (as if there were no film) 
and an order of 2.  Further increases in thickness will have the reflectance increasing and 
decreasing in the same pattern.  Each successive extreme will be the next higher odd  
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Figure 3.  Reflectance of MgF2 and Al2O3 films as the film thicknesses are 
increased. 

 
order (3, 5, 7 etc.) and each successive value equal to that of the uncoated substrate will 
correspond to the next higher even order (4, 6, 8 etc.).  At the QWOT the cosine is –1 and 
the expression for the reflectance becomes: 
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which can then be reduced to: 
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which is readily solved for n1: 
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Equation 15 is a relatively simple and convenient expression that can be used to calculate 
the refractive index of any single layer film at QWOT films or odd numbered orders.  
Unfortunately the same can not be done at the HWOT films or the even orders since the 
cosine function is +1 and the expression reduces to one where there is no n1 term left for 
which to solve.  The expression is only in terms of the substrate refractive index and 
results in the reflectance of the uncoated substrate. 
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At the QWOT value (we refer to this as the first order or m=1) where the cosine is -1, the 
phase thickness is π  radians.  Therefore it follows that we can set the expression for the 
phase thickness equal to π  and solve for the physical thickness of the film as follows: 
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At each successively higher order the phase thickness is π  radians thicker than at the 
previous order.  Therefore, at the first order the above expression applies.  At the second 
order the phase thickness is 2π  or 4πn2d/λ2 and at the third order the phase thickness is 3π  
or 4πn3d/λ3.  Therefore it follows that at any order m, the phase thickness is mπ  or 
4πnmd/λm where λm and nm are the wavelength and refractive index respectively of the 
mth order and d is the film thickness. Therefore: 
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Equation 16 is valid at all orders, odd and even.  Since for any specific film there is only 
one film thickness it follows that at any even order the refractive index can be calculated 
from an adjacent odd order in the interference pattern.  Or, if x is an even order (2, 4, 6 . .  
etc.) then: 
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and x+1 is the higher odd order. 
 
Therefore it follows that the above expression can be solved for nx two ways (where x is 
an even order) ÅÅas follows: 
 

  ( )

( ) ( )1

1

1 −

−

−
=

x

xx
x x

xn
n

λ

λ
 or ( )

( ) ( )1

1

1 +

+

+
=

x

xx
x x

xn
n

λ
λ

   (17) 

 
We now have all the tools necessary to take reflection scans of a single layer material and 
extract the refractive index.  As a first example, let us compute the theoretical 
performance of a hypothetical 400 nm TiO2 film.  If the film were non-absorbing and 
non-dispersive on a non-dispersive, we would have a trivially easy situation.  For 
example consider the plot for a 400 nm TiO2 film with a refractive index of 2.4 deposited 
on a glass substrate with a refractive index of 1.52 (see Figure 4).  All of the reflectance 
peaks are of the same value 33.92% and the minima are 4.258%.  The wavelengths of the 
maxima and minima are (Shown in Table II in order of decreasing wavelength – units are 
nm).  The order of the interference pattern is easily determined.  Starting at the longer 
wavelength, which is a minimum and therefore has to be even, we must determine an 
even number which multiplied by an even number will equal the product of the next  
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Figure 4.  Reflectance of a 400 nm non-dispersive TiO2 film on a non-dispersive glass 
substrate with ns= 1.52. 
 
higher integer times the next lower interference wavelength.  If we start by trying 2, we 
see that 2x1920 (3840) does indeed equal 3x1280 (3840). 
 

Table II 
 
   λ 1920 1280 960 768 640 549 480 427 384 
order     2     3  4   5   6   7   8   9   10 
product 3840 3840 3840 3840 3840 3840 3840 3840 3840 
 
If we want to calculate the refractive index at the even orders, we can us equation 17.  
Lets take the 6th and 7th orders as an example. 
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Of course we expected nothing less since the original calculation was based on an even 
refractive index of 2.40.  The slight error is due to using wavelength data rounded off to 
the nearest integer.  If we had used greater precision for the wavelengths, the refractive 
index calculation would have been even closer.  Let’s now consider a more complicated 
situation.  We still have a 400 nm TiO2 film over a glass substrate but both materials will 
be dispersive.  Table III contains the dispersion data for the two materials and Figure 5 
shows a computer generated reflection plot of the film (wavelength units are nm). 
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Table III 
 

λ 1826 1234 936 753 640 558 498 451 416 386 361 

n 2.283 2.320 2.339 2.358 2.400 2.442 2.492 2.539 2.596 2.652 2.708 

k 0 0 0 0 0 .00023 .000420 .00044 .00286 .0054 .0079 

glass 1.507 1.507 1.509 1.512 1.515 1.518 1.522 1.525 1.529 1.533 1.536 

 
Figure 5.  400 nm dispersive TiO2 film over a dispersive glass substrate. 
 
The plot shown in figure 5 is significantly different than the one shown in Figure 4.  In 
the first place, neither the maxima nor the minima are at the same value.  Both are 
increasing as the plot goes from longer to shorter wavelengths.  This is due to the fact that 
the refractive index of both materials (film and substrate) increases as one goes from 
longer to shorter wavelengths.  The effect is further mitigated by the fact that the TiO2 
film becomes more and more absorbing starting at 451 nm and lower.  Assume that the 
film is actually unknown.  It is no longer as clear as to what the order is and we need to 
determine it.  Again the order of the first minimum at 1826 must be an even order (2 or 4 
or 6 - - - - etc.)  If we try 2, then 2x1826=3652 which is not quite the same as 
3x1234=3702.  However, 4x1826=7304 and 5x1234=6170 which are even further apart 
and therefore the first example is correct.  As it turns out, in the real world of dispersive 
materials, the product of the order times the wavelength will be increasing (slightly) as 
we go to shorter wavelengths with greater refractive index.  Table IV shows the 
wavelengths, orders and the products of the two for this example.  Also shown in Table 
IV are the reflectance maxima and the calculation of the refractive index of the film using 
equation 15. 
 
As a last step we can calculate the refractive index at the even orders by using equation 
17.  This is done from the the lower odd order in the row marked n(n-1) and from the 
higher order in the row marked n(m+1). 
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Table IV 
 
λ       1826 1234 936 753 640 558 498 451 416 386 361 
order 2 3 4 5 6 7 8 9 10 11 12 

product 3652 3702 3744 3795 3840 3913 3984 4059 4160 4246 4732 
max  .31648  .32801  .35329  .38101  .39751  

n  2.320  2.358  2.442  2.538  2.601  
n(m-1) 2.289  2.326  2.405  2.491  2.548  - 
n(m+1) -  2.345  2.401  2.486  2.601  2.654 

average 2.289  2.336  2.403  2.489  2.577  2.654 

 
 
As expected, the calculations for the refractive index are exactly the same as used from 
Table III to make the calculated plot where the film material is non-absorbing.  Where 
the film is absorbing, the calculated refractive index is not the same as the example since 
equation 15 is based on the assumption that the film is non-absorbing.  Absorption in the 
film reduces the value of the reflectance maxima that results in a lower than real 
refractive index.  This is expected since in the derivation of equation 15 we assumed that 
the film material was non-absorbing.  As indicated previously, if the film material is 
absorbing, it is necessary to replace the refractive index nf with nf – ikf where nf is usually 
regarded as the real part of the refractive index and the extinction coefficient kf is the 
imaginary part of the refractive index.  Obviously the calculation of the film performance 
is much more complicated.  Angus Macleod (2) has derived the following expression for 
the extinction coefficient: 
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The above expression is valid at the turning points of the film.  One needs to know the 
reflection from a coating on a substrate, the transmission through the film into the 
substrate, the refractive index of the substrate the thickness of the film and the refractive 
index of the film.  The reflectance of the film over the substrate can be measured directly 
from a sample with a frosted back or a wedged back that either scatters or reflects the 
back surface out of the aperture of the spectrophotometer.  From this measurement the 
refractive index of the film can be calculated and the thickness of the film can be 
calculated (out at long enough wavelengths where the film is non-absorbing).  The 
refractive index of the substrate is known.  This leaves the transmission of the film into 
the substrate.  We can measure the transmission of a thin parallel plate of glass coated on 
one side.  Then knowing the reflectance of the uncoated side can calculate the 
transmission of the film into the substrate as follows: 
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  where Tp is the measured transmission of the plate  

Tu is the transmission through the uncoated side of the plate 
Tf  is the transmission of the film side into the plate. 

 
The thickness of the film could be measured directly or calculated using equation 16.  
Equation 16 is valid at QWOT where the film is non-absorbing.  Thus a calculation of the 
thickness out at one of the longer wavelengths would be valid.  If equation 16 is 
substituted in for the thickness in equation 18, the expression for the extinction 
coefficient becomes: 
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To test the above equations (19 and 20), consider the previous 400 nm TiO2 film.  The 
computed transmission of a thin glass plate coated one side is shown in Figure 6 (the 
format of the plot is different in appearance than the previous plots since they were 
copied and pasted in directly from the software used to generate them).  In this case the 
software was actually used to calculated the transmission through the film and we used 
Excel to calculate back to the measured transmission through the plate coated on one 
side. 
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Figure 6.  .  400 nm dispersive TiO2 film over a dispersive glass substrate 
 
The above film is non-absorbing at the maxima where the transmission is the same as that 
of the uncoated clear slide.  The film is absorbing where the maxima are less than that of 
the uncoated clear slide.  In order to calculate the extinction coefficient we must take the 
transmission data at the even orders (maxima in the transmission pattern and minima in 
the reflectance pattern) and calculate the transmission into the plate.  The above data can 
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also be used to calculate the refractive index at the minima in the transmission pattern, if 
the film is non-absorbing, since the reflectance from the film side is just 1-Tf.  Data at the 
extrema for the above transmission scan and calculations made from that data is 
summarized in Table V.  Included in the table is 1-Tf which will be the same as the 
reflectance in Table IV where the film is non-absorbing.  Therefore, if the refractive 
index were calculated from the transmission data where the film is non-absorbing, it 
would be the same as the calculation from the measured reflectance data.  Where the film  
 

Table V 
 

 
is absorbing, the calculated refractive index will be different than that from the 
reflectance data, typically higher when calculated from the transmission data [compare 
row 1-Tf (=R if the film is non-absorbing) and R of R (reflectance as measured)].  The 
extinction coefficient k is calculated using equation 20 and recorded in the bottom row of 
the table.  Note that this data is very close to the data used in calculating the reflection 
and transmission of the films (see Table III).  The difference between the values used to 
calculate the film performance and the computed k from R and T data is due to rounding 
off the reflection and transmission measurements to 5 decimal places. 
 
Remember that when calculating the refractive index the computed values were not the 
same as used to calculate the transmission and reflection of the film.  Since we now know 
the extinction coefficient, it is possible to correct the refractive index calculations.  A 
relationship to do this was reported by Macleod (see page 373 of reference 2) who credits 
Hall and Ferguson (4) for initially publishing the expression.  The equation is: 
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In the above equation, the first expression is just the refractive index as calculated from 
the reflection maxima ( or therefore the refractive index) and the second expression is a 
correction factor.  The thickness is the real thickness of the film and can be determined 
using an independent measurement or calculated from the optical data in a spectral region 
where the film is non-absorbing.  In order to apply equation 21 to this example, we must 
first calculate the film thickness from an odd order and long wavelength using equation 
16.  Using the third order at 1234 nm with a refractive index of 2.32 we get 398.9 nm.  
Using this thickness and the Rand T film to substrate data, we get the following corrected 
refractive indexes: 

Order 2 3 4 5 6 7 8 9 10 11 12
l 1826 1234 936 753 640 558 498 452 416 385 361

Tp 0.92134 0.66414 0.92106 0.65298 0.91955 0.62734 0.91328 0.59895 0.87866 0.54133 0.79934
Tu 0.95906 0.95906 0.95981 0.95847 0.95809 0.95766 0.95721 0.95673 0.95625 0.95569 0.95259
Tf 0.95906 0.68352 0.95891 0.67199 0.95809 0.64524 0.95216 0.61563 0.91546 0.55526 0.8304

1-Tf 0.04094 0.31648 0.04109 0.32801 0.04191 0.35476 0.04784 0.38437 0.08454 0.44474 0.1696
R of R 0.04094 0.31648 0.04109 0.32801 0.04181 0.35329 0.04329 0.38096 0.04783 0.39751 0.05795

k 0 0 0 0 0.00001 0.00023 0.00042 0.00044 0.00289 0.00560 0.00821
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Table VI 

 
Order 2 3 4 5 6 7 8 9 10 11 12
design 2.283 2.320 2.339 2.358 2.400 2.442 2.492 2.539 2.596 2.652 2.708
nf of R 2.289 2.325 2.336 2.358 2.403 2.442 2.489 2.538 2.577 2.601 2.654

nc 2.289 2.325 2.336 2.358 2.403 2.444 2.491 2.544 2.592 2.698 2.705

  
 
The design row contains the refractive index at the wavelength of the specified order 
which was used in generating the reflection and transmission data. The nf of R row 
contains the refractive index as calculated from the reflection maxima (n row from Table 
VI) and for the odd orders using equation 17 (average row from Table VI).  Note again 
that where the material is absorbing, the refractive index is lower than the real design 
value.  The nc row contains the corrected refractive index using equation 21.  Notice that 
this last row results in refractive index values very close to those used to prepare the 
example. 
 
Therefore, we have demonstrated a technique which can be used to characterize single 
layer optical thin film that are non-absorbing or only slightly absorbing.  The 
relationships developed herein are relatively simple and lend themselves to inclusion in 
various spreadsheets that would simplify analysis of multiple coating runs of materials.  
The relationships could also be used to setup worksheets in any one of many math 
programs to accomplish the same goal.  The author routinely does this type of work using 
both a MathCad worksheet and an Excel spreadsheet.   
 
In this article we have developed and demonstrated the tools necessary to take measured 
reflection and transmission data and extract the optical properties of a single layer thin 
film material.  The example used herein was from precise computed data to demonstrate 
that the technique works well.  In the real world the accuracy and precision of measured 
data is not as good as used for the example.  Also, real films do not have perfect 
homogeneity as assumed and used in this example.  In the next article in this series, we 
will discuss spectral measurement techniques, the nature and effect of inhogeneous films 
and apply these relationships to real life film data.   
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